среда, 18 декабря 2013 г.

ГЕОТЕРМАЛЬНА ЕНЕРГІЯ

Вираз «геотермальна енергетика» буквально означає, що це енергія тепла Землі («гео» – земля, «термальна» – теплова). Основним джерелом цієї енергії слугує постійний потік теплоти з розжарених надр, направлений до поверхні Землі. Земна кора отримує теплоту в результаті тертя ядра, радіоактивного розпаду елементів (подібно торію і урану), хімічних реакцій. Постійні часу цих процесів настільки великі відносно часу існування Землі, що неможливо оцінити, збільшується чи зменшується її температура.
Запаси геотермальної енергії величезні. Геотермальна енергія в ряді країн (Угорщина, Ісландія, Італія, Мексика, Нова Зеландія, Росія, США, Японія) широко використовується для теплопостачання, вироблення електроенергії. Так, в Ісландії за рахунок геотермальної енергії забезпечується 26,5% вироблення електроенергії.
У 2004 р. в світі сумарна потужність геотермальних електростанцій склала біля 9 млн. кВт, а геотермальних систем теплопостачання – біля 20 млн. кВт (теплових). За прогнозами потужність геоТЕС може становити біля 20 млн. кВт, а вироблення електроенергії – 120 млрд. кВт·год.
Розрізняють п’ять основних типів геотермальної енергії:
• нормальне поверхневе тепло Землі на глибині від декількох десятків до сотень метрів;
• гідротермальні системи, тобто резервуари гарячої або теплої води, в більшості випадків самовиливної
• парогідротермальні системи – родовища пари і самовиливної пароводяної суміші;
• петрогеотермальні зони або теплота сухих гірничих порід;
• магма (нагріті до 1300°С розплавлені гірничі породи).
Серед родовищ глибинної теплоти Землі існують термоаномальні зони родовищ теплоти, які мають підвищений геотермальний градієнт в насичених водою проникаючих гірничих породах. Таким чином, проявленням геотермальної теплоти, що має практичне значення, є запаси гарячої води і пари в підземних резервуарах на відносно невеликих глибинах і гейзери, які виходять на поверхню.
Геотермальні води класифікують за температурою, кислотністю, рівнем мінералізації, жорсткістю.
Основними показниками придатності геотермальних джерел для використання є їх природна температура, згідно з якою вони підрозділяються на низькотермальні води з температурою 40–70°С, середньотермальні з температурою 70–100°С, високотермальні води і пара з температурою 100–150°С, парогідротерми і флюїди з температурою вище 150°С.
Геотермальні електростанції (геоТЕС) мають мають ряд особливостей:
• постійний залишок енергоресурсів, що забезпечує використання повної встановленої потужності обладнання геоТЕС;
• достатньо простий рівень автоматизації;
• наслідки можливих аварій обмежують;
• питомі капіталовкладення і собівартість електричної енергії в основному можуть бути нижчими, ніж на електростанціях, які використовують інші відновлювальні джерела енергії.
ГеоТЕС можна розділити на три основні типи:
• станції, які працюють на родовищах сухої пари;
• станції з пароутворювачем, які працюють на родовищах гарячої води під тиском;
• станції з бінарним циклом, в яких геотермальна теплота передається вторинній рідині (наприклад фреону або ізобутану) і відбувається класичний цикл Ренкіна.
В Україні існують значні ресурси геотермальної енергії. Родовища геотермальних вод, придатних до промислового освоєння в Україні, розташовані в Закарпатській, Миколаївській, Одеській, Херсонській областях і в АР Крим. Найперспективнішими для використання геотермальних ресурсів є Карпатський регіон і Крим. Менш значимий потенціал геотермальних вод існує в Полтавській, Харківській, Сумській і Чернігівській областях. Річний технічний потенціал геотермальної енергії оцінюється як еквівалентний 12 млн. т у. п., що забезпечує перспективність розвитку геотермальної енергетики в країні.
ГеоТЕС, побудовані в США, Італії, Росії та інших країнах, за питомими капіталовкладеннями і вартістю електроенергії можуть конкурувати із сучасними ТЕС і АЕС.
У 2008 р. в світі встановлена потужність електрогенеруючих геотермальних установок склала біля 11 млн. кВт з виробленням біля 55 млрд. кВт·год.
Варто усвідомлювати, що механічне заміщення природного газу вугіллям на рівні конкретних споживачів енергії є найчастіше технічно неможливим або ж вимагає значних витрат на заміну паливоспоживаючого устаткування. Тому надзвичайно актуальним є питання конверсії твердого палива і/або інших вуглецевмісних матеріалів до газоподібного стану.
Сучасні технології продукування альтернативних видів палива дозволяють істотно розширити сировинну базу для їх виробництва. Наприклад, на сьогодні у світовій практиці є досить поширеними технології газифікації вугілля в потоці, у киплячому шарі, щільному шарі або в розплаві. Ці технології дозволяють використовувати вугілля зольністю до 50%, зокрема з високим вмістом сірки. Вони активно розвивалися, зокрема, з метою використання продуктів газифікації в парогазових установках електроенергетики.

Для одержання альтернативних видів газового палива на сьогодні використовуються навіть тверді побутові відходи (ТПВ), які є одним з різновидів вуглецевмісної сировини. Безпрецедентне зростання світових цін на нафтопродукти обумовило інтерес до нарощування енергетичного використання ТПВ шляхом виробництва електричної та теплової енергії. При цьому слід враховувати, що калорійність 1 т ТПВ трохи перевищує калорійність 1 бареля нафти. Саме тому в Німеччині ще в 2003 р. працювало 58, а у Франції 123 заводи, які утилізували 13,2 і 11,2 млн. т ТПВ відповідно, а Стокгольм на 58% забезпечує потреби в опаленні житлового фонду за рахунок утилізації відходів. В Україні в останні роки щорічно утворюється понад 10 млн. т ТПВ, що є значним енергетичним ресурсом.

Комментариев нет:

Отправить комментарий